Saturday, June 18, 2016

GRAVICOMMUNICATION, SUBJECTIVITY AND QUANTUM ENTANGLEMENT
Evgeny A. Novikov
University of California - San Diego, BioCircuits Institute,
La Jolla, CA 92093 -0328; E-mail: enovikov@ucsd.edu
Abstract
In this work gravicommunication (GC) is introduced, as a new form of communication (different from the classical gravitational waves). GC involves gravitons (particles of gravitation) and manifests itself, particularly, in our subjective experiences. This research is based on quantum modification of the general relativity. The modification includes effects of production /absorption of gravitons, which turn out to have small, but finite mass and electric dipole moment. It is shown, that such gravitons form the dipole Bose-Einstein condensate, even for high temperature. The theory (without fitting parameters) is in good quantitative agreement with cosmological observations. In this theory we got an interface between gravitons and ordinary matter, which very likely exist not only in cosmos, but everywhere, including our body and, especially, our brain. Subjective experiences are considered as a manifestation of that interface. A model of such interface is presented and some new experimentally verifiable aspects of natural neural systems are considered. According to the model, GC can be superluminal, which will solve the problem of quantum entanglement. Probable applications of these ideas include health (brain stimulation), new forms of communication, computational capabilities, energy resources and weapons. Some developed civilizations in the universe may already master GC (with various applications) and so should we.
Published in NeuroQuantology, December 2016, Volume 14, Issue 4.
References
Baez J. C. and Stay M. (2009), Physics, Topology, Logic and Computation: A Rosetta Stone, arXiv:0903.0340
Baranov M. A., Dalmonte M., Pupilto G. and Zoller P., Condensed Matter Theory of Dipolar Quantum Gases (2012), Chemical Review 112, 5012
Bohm D. & Hiley B. J., The Undivided Universe, Routledge 1993.
Chefranov S. G. & Novikov E. A., Hydrodynamic Vacuum Sources of Dark Matter Self-Generation in Accelerated Universe without Big Bang (2010), J. Exper. Theor.Phys. 111(5), 731-743 [Zhur. Eksper. Theor. Fiz.(2010),138(5), 830-843]; see also arXiv:1012.0241v1 [gr-qc].
Chynoweth K. M., Langston G. I., Holley-Bockelmann K. (2010), HI Clouds in the M81 Filament as Dark Matter Minihalos--A Phase-Space Mismatch, arXiv:1009.5679 [astro-ph.CO].
Damasio A. R., The Feeling of What Happens, Harcourt Brace & Company,1999
Freeman W. J., L. J. Rogers, M. D. Holms, D. L. Silbergelt (2000), Spatial Spectral Analysis of Human Electrocorticograms Including the Alpha and Gamma Bands, J. Neurosci. Meth. 95, 111.
Jirsa V. K., K. J. Jantzen, A. Fuchs, and J. A. Kelso (2002), Spatiotemporal forward solution of the EEG and MEG using network modeling, IEEE Trans. Med. Imaging 21(5), 497.
Kak S., R. Penrose and S. Hameroff (ed's), Quantum Physics of consciousness, Cosmology Science Publishers, Cambridge, MA, 2011.
Komisaruk B. R., Beyer-Flores C. & Whipple B., The Science of Orgasm, The John Hopkins University Press, 2006.
Novikov E. A., Mathematical Model for the Intermittency of Turbulent flow (1966), Dokl. Akad.Nauk SSSR,168, 1279 [Sov. Phys. Dokl. (1966),11, 497]
Novikov E. A., Nonlinear Evolution of Disturbances in a (1+1)-Dimensional Universe (1969), Zh. Exper. Teor. Fiz. 57,938-940 [Soviet Physcs JETP, v.30, #3, pp. 512-513, March 1970]
Novikov E. A., Scale Similarity for Random Fields (1969a), Dokl. Akad. Nauk SSSR 184, 1072 [Sov. Phys. Dokl. (1969),14(2), 104]
Novikov E. A., Intermittency and Scale Similarity in the Structure of a Turbulent Flow (1971), Prikl. Mat. Mekh. 35, 266 [Appl. Math. Mech. (1971), 35, 231]
Novikov E. A., The Effects of Intermittency on Statistical Characteristics of Turbulence and Scale Similarity of Breakdown Coefficients (1990), Phys. Fluids A 2(5), 814-820
Novikov E. A., Infinitely Divisible Distribution in Turbulence (1994), Phys. Rev. E 50(5), R3303
Novikov E. A., Dynamics of distributed sources (2003), Physics of fluids 15, L65
Novikov E. A., Towards Modeling of Consciousness (2003a), arXiv:nlin.PS/0309043
Novikov E. A., Quaternion Dynamics of the Brain (2003b), arXiv:nlin.PS/0311047
Novikov E. A., Manipulating Consciousness (2004), arXiv:nlin.PS/0403054
Novikov E. A., Modeling of Consciousness (2005), Chaos, Solitons & Fractals, 25, 1
Novikov E. A., Imaginary Fields (2005a), arXiv:nlin.PS/0502028
Novikov E. A., Algebras of Charges (2005b), arXiv:nlin.PS/0509029
Novikov E. A., Distributed Sources, Accelerated Universe, Subjectivity and Quantum Entanglement (2005c), arXiv:nlin/0511040v3.
Novikov E. A., Vacuum Response to Cosmic Stretching: Accelerated Universe and Prevention of Singularity (2006), arXiv:nlin/06080050.
Novikov E. A., Random Shooting of Entangled Particles in Vacuum (2007), arXiv:0707.3299.
Novikov E. A.,Towards Conscious Stochastic Systems (2010), arXiv:1008.0449v1[physics.gen-ph]
Novikov E. A., Age of the Universe and More (2015), J. of Cosmology 25, 13442-13452
Novikov E. A. Ultralight Gravitons with Tiny Electric Dipole Moment are Seeping from the Vacuum, (2016), Modern Physics Letters A, 31(15), 1650092 (5 pages).
Novikov E. A., Quantum Modification of General Relativity (2016a), Electron. J. Theor. Phys. 13 (35), 79-90.
Novikov E. A. & Chefranov S. G. (2011), A Quiet Cosmology and Halo Around the Visible Universe, J. of Cosmology 16, 6884-6891
Novikov E. A., Novikov A. E., Shannahof-Khalsa D., Schwartz B. and Wright J. (1997), Scale-similar activity in the brain, Phys. Rev. E 56(3), R2387.
Novikov E. A., Novikov A. E., Shannahof-Khalsa D., Schwartz B. and Wright J. (1997a), Similarity Regime in the Brain Activity, Appl. Nonl. Dyn. & Stoch. Systems (ed. Kadtke J.& Bulsara A.), p. 299-302, Amer. Inst. Phys., N. Y.
Penrose R., The Road to Reality, Jonathan Cape 2004.
Ward L. M., Dynamical Cognitive Science, Chapter 17, MIT Press, 2002
Widom A., Srivastava Y. N., Sivasubramanian S. (2011), Biological Nuclear Transmutations as a Source of Biophotons, arXiv:1102.4605 [physics.gen-ph].